Writing complex code is easy, Writing simple Principle

code is difficult.
Through Code Walk through

Lots of parameters to one function
Big switch/case or if/else if
Duplication code with minor changes

? How to do a code review ? - Demo
Complex code

Function names like '‘DoSomething’,
AddNumber, etc

L1 Lots of Get functions in a class

Learn to Smell the Bad Code

1) Duplication of information

[Use Asserts

Use Ioas z
Use to display information Use Computer to detect bugs
?ra?hicallf 7
Write automated test suites

L) Declare operator= and co|

constructor
L1 Declare private constructor
L1 Declare private operator new/delete

Use SAFE_DELETE

Use compiler to detect/avoid bugs
Use templates

Use Debug mode/Release mode

Use Resource Acquisition is construction
idiom

\ Good Coding Techniques
Names (variable, class, functions) should |
convey the intent and not just action

Take care of formating and indentation
Group related functions, variables together
Write small functions (< 25 lines

Write readable code / ||

Decide on an error handling strateg

Use table driven approach whenever possible
rather than if/else

Prefer virtual functions rather than RTTI
? How to use STL ?

Learn,
? How to use Macros ?

Write code that easier for compiler to
optimize

Open/Closed principle

Liskov substitution principle
Interface Segregation Principle
Dependancy Inversion Principle

Design Principles

Learn to Spot design patterns Use Design Patterns

Encapsulation is the ke
Evaluate your design using the design
principles
What is the responsibility of a class

ONLY ONE

Remember
Answer following guestions

What is the responsibility of a function

Refactor

better-developer.mmp - 1/28/2004 - nitinbhide@vsnl.com - Nitin Bhide

KISS
Communication is the ke
Learn to Unlearn
Divide and Rule
[/ Encapsulation is the ke
Learn to visualize the program flow

Remember

Effective C++

More Effective C++
Design Patterns
Code Complete
Practice of Programmin:

Read Books

Graphics Gems

Code
N BN Learning to use new techniques in your
71\ / 1\ project
Becoming Better
[Programmin
Software Developer : :
1/28/2004 - v136
Learn to Read the Stack Trace
Learn to visualize the program flow
Learn CPPUnit or JUnit
OTHER TECHNIQUES
Make the assumptions explicit by using
Asserts
Document 'design pattern's used in the
design
Design

