
Code

Design

Remember

� Programming Arts

OTHER TECHNIQUES

Becoming Better
Software Developer

1/28/2004 - v136

PrincipleWriting complex code is easy, Writing simple 
code is difficult.

How to do a code review ? - Demo

Through Code Walk through

Learn to Smell the Bad Code

Big functions/Big files
Lots of parameters to one function

Big switch/case or if/else if

Duplication code with minor changes
Complex code

Function names like 'DoSomething', 
AddNumber, etc

� Lots of Get functions in a class

� Duplication of information

Good Coding Techniques

Use Computer to detect bugs

� Use Asserts
Use logs 

Use to display information 
graphically

Write automated test suites

Use compiler to detect/avoid bugs

� Declare operator= and copy constructor

� Declare private constructor

� Declare private operator new/delete

Use macrosUse SAFE_DELETE

Use templates
Use Debug mode/Release mode

Use Resource Acquisition is construction 
idiom

Use const

Write readable code

Names (variable, class, functions) should 
convey the intent and not just action

Take care of formating and indentation

Group related functions, variables together
Write small functions (< 25 lines)

Decide on an error handling strategy
Use table driven approach whenever possible 
rather than if/else

Prefer virtual functions rather than RTTI

Learn
How to use STL ?

How to use Macros ?

Write code that easier for compiler to 
optimize

Design Principles

Open/Closed principle

Liskov substitution principle
Interface Segregation Principle

Dependancy Inversion Principle

Use Design PatternsLearn to Spot design patterns

Remember

Encapsulation is the key

Evaluate your design using the design 
principles

Answer following questions
What is the responsibility of a classONLY ONE

What is the responsibility of a function

Refactor

KISS

Communication is the key
Learn to Unlearn

Divide and Rule

Encapsulation is the key

Learn to visualize the program flow

Read Books

Effective C++

More Effective C++

Design Patterns
Code Complete

Practice of Programming

C++ Gems

Graphics Gems

Learning to Spot design patterns

Learning to use new techniques in your 
project

Understand a warning don't suppress it 

How to write your own STL streams ?

How to write your STL style iterators ?

How to write a memory manager ?

How to overload operator new/delete ?

Details of Compiler/Linkers ?
Learn about Compiler Optimizations

Debugging

Learn to Read the Stack Trace

Develop your own style
Learn printf/logger debugging

Learn to visualize the program flow

Testing
Learn CPPUnit or JUnit

Write automated test suites

Documentation

� Document intent not Action

Make the code self documenting
Make the assumptions explicit by using 
Asserts
Document 'design pattern's used in the 
design

better-developer.mmp - 1/28/2004 - nitinbhide@vsnl.com - Nitin Bhide


